本文共 744 字,大约阅读时间需要 2 分钟。
使用线性回归模型对波士顿地区房价进行预测
为了对波士顿地区的房价进行预测,我们首先从sklearn的数据集加载相关数据。通过加载数据后,我们可以获取到数据集的描述信息。接下来,我们将数据集按照训练集和测试集的比例进行划分,使用随机数33作为种子值,以确保结果的一致性。
在进行回归分析之前,我们观察到目标变量(房价)之间的差异较大。这表明预测模型可能会受到较大偏差的影响。因此,我们需要对数据进行标准化处理。标准化的目的是将不同特征的量纲统一,从而提升模型的预测性能。
具体来说,我们分别对训练集和测试集的特征以及目标变量进行标准化处理。使用StandardScaler类实现这一目标,训练集和测试集的特征特征被标准化处理。对于目标变量房价,我们也进行了标准化处理。
在实现房价预测模型时,我们选择了简单的线性回归模型和支持向量机(SGDRegressor)模型。线性回归模型易于实现且具有良好的可解释性,而SGDRegressor在处理非线性关系时表现较为稳定。
首先,我们使用线性回归模型对房价进行预测。通过fit方法训练模型,并利用test方法对测试集进行预测。评估模型的性能时,我们可以通过模型的score方法获取默认评估指标。进一步,我们还可以通过R-squared值、均方误差(MSE)和均绝对误差(MAE)来更全面地评估模型的预测效果。
除了线性回归模型,我们还尝试使用支持向量机回归模型对房价进行预测。同样使用fit和predict方法对模型进行训练和测试,并通过模型的评估指标来分析模型性能。通过对比两种模型的预测结果,我们可以更好地理解不同模型在房价预测任务中的优劣。
这些预测结果为我们提供了对波士顿地区房价的重要洞察,同时也为未来房地产市场的分析和预测奠定了基础。
转载地址:http://ixjb.baihongyu.com/